- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Aitken, Sally N (1)
-
Andrew, Rose L (1)
-
Booker, Tom R (1)
-
Borevitz, Justin O (1)
-
Bruhl, Jeremy J (1)
-
Collins, Timothy L (1)
-
Famula, Randi (1)
-
Fiehn, Oliver (1)
-
Fischer, Martin C (1)
-
Guerra, Fernando P. (1)
-
Hodgins, Kathryn A (1)
-
Holliday, Jason A (1)
-
Holliday, Jason A. (1)
-
Huang, Kaichi (1)
-
Ingvarsson, Pär K (1)
-
Janes, Jasmine K (1)
-
Khandaker, Momena (1)
-
Koenig, Daniel (1)
-
Kreiner, Julia M (1)
-
Kremer, Antoine (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Black cottonwood (Populus trichocarpa) is a species of economic interest and an outstanding study model. The aspen borer (Saperda calcarata) causes irreversible damage to poplars and other riparian species in North America. The insect can produce multiple effects ranging from the presence of some galleries in the stem to tree death. Despite the ecological and commercial importance of this tree–insect interaction, the genetic mechanisms underlying the response of P. trichocarpa to S. calcarata are scarcely understood. In this study, a common garden trial of P. trichocarpa provenances, established in Davis, California, was assessed at the second year of growth, regarding the infestation of S. calcarata from a natural outbreak. A genome-wide association study (GWAS) was conducted using 629k of exonic SNPs to assess the relationship between genomic variation and insect attack. Tree architecture, in terms of stem number per plant, and the wood metabolome were also included. Insect attack was independent of the number of stems per tree. The performed GWAS identified three significantly associated SNP markers (q-value < 0.2) belonging to the same number of gene models, encoding proteins involved in signal transduction mechanisms and secondary metabolite production, including that of R-mandelonitrile lyase, Chromodomain-helicase-DNA-binding family protein, and Leucine-rich repeat protein. These results are aligned with the current knowledge of defensive pathways in plants and trees, helping to expand the understanding of the defensive response mechanisms of black cottonwood against wood borer insects.more » « less
-
Whiting, James R; Booker, Tom R; Rougeux, Clément; Lind, Brandon M; Singh, Pooja; Lu, Mengmeng; Huang, Kaichi; Whitlock, Michael C; Aitken, Sally N; Andrew, Rose L; et al (, Nature Ecology & Evolution)Abstract Closely related species often use the same genes to adapt to similar environments. However, we know little about why such genes possess increased adaptive potential and whether this is conserved across deeper evolutionary lineages. Adaptation to climate presents a natural laboratory to test these ideas, as even distantly related species must contend with similar stresses. Here, we re-analyse genomic data from thousands of individuals from 25 plant species as diverged as lodgepole pine andArabidopsis(~300 Myr). We test for genetic repeatability based on within-species associations between allele frequencies in genes and variation in 21 climate variables. Our results demonstrate significant statistical evidence for genetic repeatability across deep time that is not expected under randomness, identifying a suite of 108 gene families (orthogroups) and gene functions that repeatedly drive local adaptation to climate. This set includes many orthogroups with well-known functions in abiotic stress response. Using gene co-expression networks to quantify pleiotropy, we find that orthogroups with stronger evidence for repeatability exhibit greater network centrality and broader expression across tissues (higher pleiotropy), contrary to the ‘cost of complexity’ theory. These gene families may be important in helping wild and crop species cope with future climate change, representing important candidates for future study.more » « less
An official website of the United States government
